
ARYL SUBSTITUENT EFFECTS UPON THE THERMAL ISOMERIZATION OF N-ALKYL OXAZIRIDINES TO NITRONES Derek R. Boyd^{*}, Peter B. Coulter, W. James Hamilton Department of Chemistry, Queen's University of Belfast, Belfast BT9 5AG, Northern Ireland and W. Brian Jennings^{*}, and Valerie E. Wilson, Department of Chemistry, University of Birmingham, Birmingham B15 2TT, England

<u>Summary.</u> The results of a kinetic study of the thermal isomerization of oxaziridines derived from <u>para</u>-substituted C-arylaldimines and C-diarylketimines to the isomeric nitrones is reported.

The rearrangement of oxaziridines (1) to nitrones (2) has been the subject of two recent theoretical reports.^{1,2} However, although it has long been known that 3-aryloxaziridines undergo this thermal rearrangement,³ there is a paucity of quantitative experimental data apart from the original³ pioneering investigation on 2-t-butyl-3-phenyloxaziridine. The present report is concerned with the rates of thermal rearrangement of various <u>para-substituted 3-aryl-</u> and 3,3diaryl-oxaziridines. The rearrangements were followed by ¹H n.m.r. at 95[°] in toluene-d₈ solution using the methyl resonance of either toluene or hexamethyl benzene as internal reference for integration, and linear first order kinetic plots were obtained.

3-Aryloxaziridines gave the nitrones exclusively, but in the 3,3-diaryl series the initially formed nitrones eliminated 2-methylpropene at 95° to give the corresponding diaryloximes, as anticipated from earlier studies.^{4,5}

The results shown in the table establish that the thermal rearrangement $(1) \rightarrow (2)$ is facilitated by electron donating substituents on the phenyl ring. The best Hammett correlations were obtained with δ_p^+ and the corresponding ρ^+ values are given in the table. Calculations on a model system using <u>ab initio</u> and semiempirical SCF methods indicate that the transition state for the thermal rearrangement of oxaziridine to nitrone resembles a distorted 90° twisted nitrone as depicted in (3).^{1,2} Carbon-oxygen bond fission is quite well advanced $(c\hat{N}o = 90-100^\circ)$, but rotation around the CN bond mainly occurs after the transition state (3).^{1,2} The direction of the <u>para</u>-substituent effect in 3phenyloxaziridines indicates that positive charge develops at C-3 in the transition state for rearrangement, though the magnitude of the ρ^+ values suggests that the positive charge development is modest. Semiempirical molecular orbital calculations on nitrones indicate that the imino carbon is negatively charged in both the ground and 90° twisted states.^{6,7} Therefore the negative ρ values obtained in the present investigation would tend to suggest that the transition state is attained fairly early, <u>i.e</u>. during the initial C-0 bond cleavage of the oxaziridine.

The ρ value for the series 2 compounds which possess two substituents might have been expected to be approximately twice that for series 1. Steric hindrance in series 2 compounds may prevent the aryl rings from adopting a coplanar confrontation which optimises conjugation. The second aryl ring present in series 2 compounds lowers the free energy barrier to rearrangement by <u>ca</u>. 1.5 kcal mol⁻¹. This effect could be attributed to electronic stabilization of the transitionstate or to steric destabilization of the ground-state oxaziridines.

Table. Rate constants (k,sec⁻¹) and free energies of activation (ΔG^{\neq} , kcal mol⁻¹) for thermal rearrangement of oxaziridines at 95°C in toluene-d₈

Series 1				Series 2			
R	$\mathbf{R}^{\mathbf{l}}$	10 ⁵ k	∆G≠	R	\mathbf{R}^{1}	10 ⁵ k	∆G≠
4-N02 ^{C6H4}	Н	0.980	30.1	4-N02 ^{C6H4}	4-N0 ₂ C ₆ H ₄	7.30	28.6
4-C1C6H4	н	3.20	29.2	$4-C1C_{6}H_{4}$	4-C1C6H4	17.1	28.0
4-FC6H4	н	3.11	29.3	4-FC6H4	4-FC6H4	16.0	28.1
с ₆ н ₅	н	3.89	29.1	с _б н ₅	с _б н ₅	11.6	28.3
4-MeC ₆ H ₄	н	7.15	28.6	4-MeC ₆ H ₄	4-MeC ₆ H ₄	29.3	27.6
4-MeOC6H4	н	17.0	28.0	4-MeOC ₆ H ₄	$4 - MeOC_6H_4$	85.4	26.8
$4 - Me_2 NC_6 H_4$	н	1500.00	24.7				
Hammett ρ^+ -1.27					Hammett ρ^{+}	-0.67	
correlation coeff. 0.96				correlation coeff. 0.93			

correlation coeff. References and Notes

- 1. B. Bigot, D. Roux, A. Sevin, and A. Devaquet, <u>J.Amer.Chem.Soc.</u>, 1979, <u>101</u>, 2560.
- 2. J. Sauer, Tetrahedron, 1979, 35, 2109.
- 3. M.F. Hawthorne and R.D. Strahm, J. Org. Chem., 1957, 22, 1263.
- 4. D.R. Boyd, D.C. Neill, and M.E. Stubbs, J.Chem.Soc., Perkin Trans. 2, 1978, 30.
- 5. In addition to the oxime and 2-methylpropene, a small amount of other unidentified decomposition products were evident in the n.m.r. spectra (singlet signals at δ 1.19 and 1.39 in toluene-d_R).
- 6. W.B. Jennings, D.R. Boyd, and L.C. Waring, <u>J.Chem.Soc.,Perkin Trans.2</u>, 1976, 610.
- 7. W.B. Jennings and S.D. Worley, Tetrahedron Letters, 1977, 1435.

(Received in UK 9 March 1984)